(8/15)q^2-100q+Y=0

Simple and best practice solution for (8/15)q^2-100q+Y=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8/15)q^2-100q+Y=0 equation:



(8/15)q^2-100q+=0
Domain of the equation: 15)q^2!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
(+8/15)q^2-100q+=0
We add all the numbers together, and all the variables
-100q+(+8/15)q^2=0
We multiply all the terms by the denominator
-100q*15)q^2+(+8=0
Wy multiply elements
-1500q^2+8=0
a = -1500; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-1500)·8
Δ = 48000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48000}=\sqrt{1600*30}=\sqrt{1600}*\sqrt{30}=40\sqrt{30}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{30}}{2*-1500}=\frac{0-40\sqrt{30}}{-3000} =-\frac{40\sqrt{30}}{-3000} =-\frac{\sqrt{30}}{-75} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{30}}{2*-1500}=\frac{0+40\sqrt{30}}{-3000} =\frac{40\sqrt{30}}{-3000} =\frac{\sqrt{30}}{-75} $

See similar equations:

| 10x+17x-6+5=-8x+5-6 | | 4v+42=-2(v-6) | | x-12.08=4.22 | | 33(x-1.25)=11.25 | | 4/x=6/2.1 | | 110=38.08+0.25x | | 2x/x^2=2/x+1-1/x-1 | | 7x-8=9x-8 | | 5x/3-4=1 | | 144-x=0 | | 5=9+c/4 | | 12.75=x+1.375x | | X+2(x-7=4 | | ​9​/​81​​=​22/​x​ | | f(9)=9 | | x-3-1/4x=x+12-1x | | 17=9−2*a | | 3g+4(-6+3)=1-g | | 40+d=-20-4d | | (3-x-)6=24 | | |1+v|=2 | | 3w+10=40 | | 0.06g=0.470 | | -2+1/10x=7-4/5x | | x^2/3+5/2x+3=0 | | 17=9−2a | | x+(x/40)=180 | | 19+3n-12+7n=3n-21+2n+63 | | -31+8m=-(3+6m) | | 6x-3x+13=2x+7 | | 5(d+4)=7(d–2) | | 5s=s+15=s |

Equations solver categories